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Displacement of fluid droplets from solid
surfaces in low-Reynolds-number shear flows
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(Received 18 July 1996 and in revised form 18 November 1996)

The yield conditions for the displacement of fluid droplets from solid boundaries are
studied through a series of numerical computations. The study includes gravitational
and interfacial forces, but is restricted to two-dimensional droplets and low-Reynolds-
number flow. A comprehensive study is conducted, covering a wide range of viscosity
ratio λ, Bond number Bd, capillary number Ca and contact angles θA and θR . The
yield conditions for drop displacement are calculated and the critical shear rates are
presented as functions Ca(λ, Bd, θA,∆θ) where ∆θ = θA − θR is the contact angle hys-
teresis. The numerical solutions are based on the spectral boundary element method,
incorporating a novel implementation of Newton’s method for the determination of
equilibrium free surface profiles. The numerical results are compared with asymp-
totic theories (Dussan 1987) based on the lubrication approximation. While excellent
agreement is found in the joint asymptotic limits ∆θ � θA � 1, the useful range of
the lubrication models proves to be extremely limited. The critical shear rate is found
to be sensitive to viscosity ratio with qualitatively different results for viscous and
inviscid droplets. Gravitational forces normal to the solid boundary have a significant
effect on the displacement process, reducing the critical shear rate for viscous drops
and increasing the rate for inviscid droplets. The low-viscosity limit λ → 0 is shown
to be a singular limit in the lubrication theory, and the proper scaling for Ca at small
λ is identified.

1. Introduction
The displacement of liquid droplets from solid substrates is a fundamental problem

of fluid mechanics. This problem has application in numerous areas including
distillation, spray coating, packed towers and a variety of multiphase flow operations
in the chemical process industry. Our interest in the problem focuses on drop
displacement in viscous shear flows at low Reynolds number. This regime has
relevance in coating operations and in enhanced oil recovery. In the coating industry,
the presence of small liquid droplets or gas bubbles on solid surfaces is a major
concern in the design of process equipment, because even a small flow disturbance is
sufficient to destroy the uniformity required in precision film coating. In the petroleum
industry, enhanced oil recovery techniques are strongly dependent on the interaction
of oil and water in immiscible two-phase mixtures, and the success of such operations
depends on the displacement of small oil droplets attached to solid surfaces.

The fundamental issues associated with viscous drop displacement from rigid
boundaries have been addressed in a series of papers by Dussan and coworkers
(Dussan & Chow 1983; Dussan 1985, 1987). These authors developed yield criteria
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for the critical capillary number Ca as a function of the advancing and receding
contact angles, θA and θR . In the first two articles, they considered droplets in
a quiescent fluid displaced by the action of gravity. In the final article, Dussan
considered the displacement of a droplet through the action of a viscous shear flow.
In each of these papers, the analysis was based on asymptotic theory valid for small
contact angle hysteresis (θA − θR). Additional simplifications included the restriction
to small contact angles and lubrication theory in the first and third articles and to
small Bond numbers Bd in the second article. Johnson (1981) considered a problem
analogous to that of Dussan (1987) involving the stability of liquid layers attached to
solid spherical particles. He developed a lubrication theory for axisymmetric flows of
thin liquid films under the assumption of small contact angles. Additional studies of
fluid films enclosing solid particles are discussed in the review article by Johnson &
Sadhal (1985).

At the opposite end of the flow spectrum, Durbin (1988) analysed the displacement
of droplets in inviscid flow, employing free streamline theory and an asymptotic
analysis for infinitesimal contact angles. King & Tuck (1993) studied a similar problem
for a thin droplet in a nearly inviscid flow. They assumed that the exterior flow induced
a constant stress (or drag coefficient) on the drop surface and solved the lubrication
equations inside the droplet to determine yield conditions for drops on inclined
surfaces. Their model considered a balance between viscous and gravitational forces,
ignoring the effects of surface tension. Tuck & Schwartz (1991) considered droplets
on inclined surfaces in the absence of exterior fluids with equilibrium configurations
determined by gravitational forces and surface tension.

Feng & Basaran (1994) conducted a detailed study of the drop displacement
problem for steady two-dimensional flows at arbitrary Reynolds number Re. These
authors utilized finite element solutions of the Navier–Stokes equations to determine
the yield conditions for a range of Reynolds number and capillary number and
identified the Weber number We ≡ Re Ca as the most important parameter for
drop displacement. In this study, the authors emphasized modest values of the
capillary number for which the stress at the critical point was dominated by inertial
forces, hence the dependence on Weber number. Feng & Basaran restricted their
computations to bubbles with zero viscosity and no gravitational forces. At low
Reynolds number, this work complements that of Dussan and Chow, but is not
directly comparable owing to different geometries and assumptions at the contact
line. Dussan and Chow analysed three-dimensional droplets attached to a smooth
plane with contact angles limited by θA and θR , while Feng & Basaran considered
two-dimensional droplets attached to a slot in a plane wall with the contact line
pinned at the sharp boundary edge. Dussan and Chow presented an asymptotic
theory valid at small contact angles, while Feng & Basaran analysed bubbles with
large contact angles with the bulk of their results devoted to contact angles of 90◦.
In a recent paper, Li & Pozrikidis (1996) studied the three-dimensional analogue
of the problem of Feng & Basaran in the limit of low-Re flow. These authors
assumed a contact line of prescribed shape, computed the shapes of droplets as
a function of Ca and reported on the distribution of contact angles around the
contact line. Owing to the difficulty of the three-dimensional flow problem, this
study was limited to fluids and droplets of equal viscosity and computations were
performed for a limited range of parameter values. More significantly, the prescription
of contact lines of elliptical planform is an approximation which does not strictly
conform to observations (Furmidge 1962) or to the asymptotic theory of Dussan
(1987).
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In the present article, we address the two-dimensional analogue of Dussan’s prob-
lem, but make no restrictions on any parameter values or flow conditions. Our goal
is to provide a comprehensive solution of the problem and hence to assess the limits
of the asymptotic theories. In particular, we seek to determine the range of validity
for lubrication approximations and the effect of fluid viscosity ratio. We include
gravitational effects to investigate droplets which feature large aspect ratios and rel-
atively flat interfaces with arbitrary contact angles. In particular, we consider the
displacement of a two-dimensional droplet from a plane substrate due to the action
of a viscous shear flow in the presence of gravitational forces. We consider arbitrary
values for the contact angles, the contact angle hysteresis (θA − θR) and the viscosity
ratio, and include a range of Bond numbers for gravity acting normal to the plane
substrate. We determine the equilibrium shapes of the fluid interface and find the yield
condition for drop displacement. In this paper, we define an equilibrium shape to be a
stationary interface profile for which all kinematic and dynamic boundary conditions
are satisfied under conditions of steady flow. This should not be confused with the
concept of equilibrium surfaces under quiescent conditions. The yield condition is
expressed as a critical Ca as a function of contact angle θA, hysteresis (θA − θR),
viscosity ratio λ and Bond number Bd.

To address these problems, we employ the spectral boundary element method
described by Occhialini, Muldowney & Higdon (1992) and further discussed by Mul-
downey & Higdon (1995). This algorithm is combined with an iterative scheme to
determine the equilibrium shapes of the fluid interface. In prior boundary element
studies, most authors have determined equilibrium shapes by time-dependent compu-
tations (e.g. Li & Pozrikidis 1996) or simple iterative strategies with slow convergence
rates over small domains (see Pozrikidis 1992). Here we employ a novel approach
which implements a Newton iteration scheme within the boundary integral frame-
work. We obtain the rapid convergence characteristic of Newton’s method and find a
large radius of convergence. The performance of this algorithm compares well with
the Newton iteration method of Higdon & Schnepper (1994), but the implementation
is simpler than that of the earlier procedure.

In the analysis of free surface flows, Newton’s method has long been established
as an effective tool in the finite element literature. The implementation of these
algorithms has been discussed in numerous publications by Scriven and coworkers
with application to coating flows. Early efforts employing algebraic grid generation
are discussed by Saito & Scriven (1981) and by Kistler & Scriven (1984a, b), while
more recent implementations based on elliptic mesh generation are described by
Christodoulou & Scriven (1992). Additional references for finite element/Newton’s
method applications in free surface flow are cited in these publications, as well as
in the aforementioned work of Feng & Basaran (1994). In the implementation of a
Newton method for boundary integral computations, we seek to extend to this class
of algorithms, an effective technique which has long proved its value in the field of
finite element computations.

2. Mathematical formulation
We consider a two-dimensional droplet attached to a plane solid boundary as

illustrated in figure 1. The droplet size is specified by its volume V0 or equivalently
by the radius a of a circular droplet of volume πa2 = V0. The droplet (fluid 1) has
density ρ1 and viscosity λµ, while the surrounding fluid has density ρ2 and viscosity
µ. The gravitational acceleration is g and points in the negative y-direction. The
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Figure 1. Fluid droplet attached to a solid boundary in a viscous shear flow.

surface tension γ is assumed constant. The undisturbed flow exterior to the droplet is
that of a simple shear flow u∞ = (Gy, 0) where G is the shear rate. The contact line
intersects the solid wall at positions x = (± `, 0) with the upstream angle designated
θ1 and the downstream angle θ2. Without loss of generality, we have chosen the origin
centred between the two contact points. Note that the distance ` is not fixed but is
determined as a part of the problem solution as discussed below.

The capillary number Ca and Bond number Bd are defined by

Ca =
µGa

γ
, Bd =

(ρ1 − ρ2)ga
2

γθA
.

The definition of the Bond number follows from characteristic values for the gravi-
tational forces based on drop height and interfacial forces based on drop curvature.
This definition is consistent with that of Dussan and coworkers.

The governing equations in fluid 2 are the Stokes equations together with continuity

∇ · σ = −∇p+ µ∇2u = 0, (1)

∇ · u = 0, (2)

while in the droplet, the same equations apply with the viscosity replaced by λµ.
The boundary conditions on the solid wall and at infinity give

u = 0 on y = 0, (3)

u→ u∞ as r →∞. (4)

At the interface, the boundary conditions on the velocity u and surface stress f are

u1 = u2 (5)

∆f = f2 − f1 = γ(∇ · n)n+ (ρ2 − ρ1)(g · x)n. (6)

Here the subscripts designate quantities evaluated in fluids 1 and 2 respectively. The
surface stress is defined as f = σ ·n and n is the unit normal which we choose to point
into fluid 2. The pressure as defined in σ is the dynamic pressure, hence the gravity
force is absent from (1) and appears in the interfacial stress boundary condition (6).

With an interface of prescribed shape, the equations and boundary conditions (1)–
(6) constitute a well-posed boundary value problem from which one may determine
the velocity and stress throughout both fluid regions. For a droplet profile of arbitrary
shape, the solution for the flow field will not in general correspond to a stationary
equilibrium shape. For equilibrium shapes, the velocity field must satisfy an additional
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constraint – the kinematic condition at the interface

u1 · n = u2 · n = 0. (7)

Although the governing equations and boundary conditions are linear in u and
f, the problem of determining equilibrium droplet shapes constitutes a nonlinear
problem for the unknown profile Γ : that is the velocity u and stress f, as well as
the curvature ∇ · n are nonlinear functions of the geometrical variables describing
the interface shape. For a given flow field u∞ and droplet volume V0 ≡ πa2, there
is no guarantee that an equilibrium shape exists, nor is there any certainty that any
solutions are unique. For freely suspended droplets, the system of equations (1)–(7) is
sufficient to determine the family of equilibrium profiles. For droplets in contact with
a solid boundary, additional conditions are required to prescribe the interface shape
in the vicinity of the contact line.

The boundary conditions at the contact line relate the contact angle θ to the
position and velocity of the contact line. A wealth of literature has been devoted to
this subject with a review of early work given by Dussan (1979), and a comprehensive
review of more recent work given by Kistler (1993). We note that the prediction of
dynamic contact angles for moving contact lines poses a far greater challenge than
that for the static contact angles required in the present study. We refer the reader to
Chen, Rame & Garoff (1995) for further discussion of recent work in this area.

For a stationary contact line, the boundary condition is determined by the nature
of the solid surface. For a rough surface, one may require that the positions of the
contact lines remain at fixed positions while allowing the contact angle to vary over
a wide range. This is the condition assumed by Feng & Basaran (1994). From an
experimental viewpoint, this condition may be realized by a droplet attached to an
orifice or a slit in the plane (Feng & Basaran 1994; Oliver, Huh & Mason 1977).
At the opposite extreme, one may consider a perfectly smooth, homogeneous surface
on which the contact angle takes a single value θ. An elementary force balance (see
the Appendix, also Dussan & Chow 1983) shows that a droplet on a such a surface
cannot resist a net force arising from fluid motion; hence stationary droplets could
exist only in quiescent fluids. For real surfaces, it has been found that the static
contact angle exhibits a hysteresis effect where the contact line remains stationary for
any angle in the range θR < θ < θA. The limits θA and θR are called the advancing
and receding angles respectively.

The source of contact angle hysteresis has been the subject of much study in the
literature. Experimental observations (Good & Koo 1979; Gaydos & Neumann 1987;
Yekta-Fard & Ponter 1988) show that the hysteresis is a function not only of the
fluid and solid properties, but also of the size of the droplets. Recent theories on
the origin of these phenomena point to microscopic variation in surface properties,
either in the form of surface roughness or chemical inhomogeneity (Marmur 1994).
This subject is of considerable interest, because contact angle hysteresis is the direct
mechanism which allows droplets to adhere to a solid surface in the presence of flow.
Although many previous theories have assumed that θA−θR is small, we note that the
hysteresis may in fact be quite large. As an example, Furmidge (1962) measured the
contact angles for water with various surfactants on hydrocarbon surfaces (bees-wax,
cellulose acetate). With θR = 0◦, values of θA as high as 45◦ were observed, while
hysteresis in the range of 20◦–30◦ was observed as θR increased to values as high
as 87◦. Values of θA − θR in the range of 20◦–30◦ have been routinely reported
for gas–liquid systems, while substantially higher values may occur for liquid–liquid
systems, (Good & Koo 1979; Good 1979).
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In the light of this discussion, we identify two classes of problems for equilibrium
profiles for droplets on surfaces. The first class (studied by Feng & Basaran with the
additional restrictions λ = 0, Bd = 0) may be stated:

(I) for contact lines at fixed positions determine profiles Γ which satisfy (1)–(7) at
specified Ca, Bd and λ for given droplet volume V0 = πa2.
The second class of problems may be stated

(II) for contact angles θ1 and θ2 in the range θR < θ < θA determine profiles Γ
which satisfy (1)–(7) at specified Ca, Bd and λ for given droplet volume V0 = πa2.

Experience shows that problems of class I generally possess a single solution for
a given Ca, Bd and λ. By contrast, the inequality constraint for problems of class II
leads to a family of solutions corresponding to different values of θ1, θ2 within the
allowable range. Individual solutions from this class may be determined by specifying
one of the angles a priori and solving for ∆θ. Specifically, in this paper, we seek
equilibrium profiles by specifying the contact angle θ2 = θA at the trailing contact
point, the position at the leading point and the capillary number. The algorithm
solves for the equilibrium profile which determines the position of the trailing contact
point, the leading contact angle θ1 and hence ∆θ. As the capillary number is increased,
the hysteresis needed to balance the hydrodynamic force increases until the required
∆θ reaches the maximum allowed by the constraint, i.e. ∆θ = θA−θR . At this limiting
Ca, a single solution exists with θ1 = θR and θ2 = θA; at higher Ca, no solution exists
which satisfies the inequality constraint on contact angles.

It should be noted that for two-dimensional problems, the distinction between the
two classes is in the approach, and not in the final results. Thus a collection of
solutions from class I may be catalogued in class II by sorting a posteriori according
to the contact angles found in the solution. This approach cannot be extended to
three dimensions, since the perimeters of the contact line will assume different shapes.
Thus the elliptical contact lines assumed by Li & Pozrikidis (1996) in their class I
problem will not coincide with the actual contours for class II problems (Dussan
1987; Furmidge 1962). In the numerical results presented in this paper, we shall
consider problems of class II and report our results in this form. Additional results
for class I problems are given by Dimitrakopoulos (1996).

2.1. Boundary integral formulation

The fundamental solution for the two-dimensional Stokes equations is designated Sij
and the associated stress is Tijk . These solutions may be written in the form

Sij = −δij ln r +
x̂ix̂j

r2
, (8)

Tijk = −4
x̂ix̂j x̂k

r4
, (9)

where x̂ = x− x0 and r = |x̂|.
By introducing the fundamental solution and integrating over a volume of fluid

bounded by a surface S , the velocity at a point x0 on the surface is expressed

u(x0) = − 1

2πµ

∫
S

[S · f − µT · u · n] dS. (10)

The derivation of this integral formula is presented in standard references, see Higdon
(1985), Pozrikidis (1992). Here we have chosen the unit normal vector pointing into
the volume of fluid.

For a fluid droplet attached to a solid surface, one may model the effect of the solid
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Figure 2. Domain geometry for boundary integral solution for viscous flow past droplet attached
to a solid boundary.

in two ways. In the first, one employs the Green’s function for a half-space bounded
by a solid plane (Pozrikidis 1992), and the surface of integration in (10) reduces to
that of the fluid–fluid interface. In the second approach, one employs the free-space
Green’s function (8), and the solid boundary becomes part of the boundary surface
S . In the numerical solution, the first approach leads to fewer unknowns, while the
second approach leads to simpler programming effort and numerical integration. In
addition, the second approach is readily extended to solid boundaries of more general
shape. Either method is quite effective for the present problem, and we have chosen
the second approach with the boundary surfaces as shown in figure 2. We choose a
large rectangular domain occupied by fluid 2 whose outer perimeter is designated S2,
while the portion of the boundary wall in contact with fluid 1 is designated S1, and
the interface between the fluids is Γ . The boundary conditions on the outer surface
S2 are the no-slip condition on the wall and stress boundary conditions f = f∞ on
the fluid portion. In the limit as the surface S2 approaches infinity, the solution
approaches that for an unbounded fluid. The use of stress boundary conditions on
S2 is favoured because the limiting behaviour is reached sooner than for velocity
boundary conditions.

Following standard procedure, one may write expressions (10) for each fluid and
combine the results to achieve an integral formula

Ω u(x0) = −
∫
S2

[S · f2 − µT · u2 · n] dS

+

∫
S1

[S · f1 − λµT · u1 · n] dS

−
∫
Γ

[S · ∆f − (1− λ)µT · u · n] dS (11)

which gives the velocity for a point located on the boundary surfaces. The coefficient
Ω takes values 2πµ(1 + λ), 2πλµ and 2πµ for points x0 on surfaces Γ , S1 and S2

respectively. We have taken the unit normal to point into the volume of fluid 2 and
out of the volume of fluid 1. This yields a consistent definition on the interface Γ .

For a boundary value problem with known velocity, the integral formula (10)
combined with the boundary data yields an integral equation for the unknown
surface stresses. For a droplet with interfacial boundary conditions (5), (6), the
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integral formula (11) yields an integral equation for the velocity at the interface and
the unknown stresses or velocities on the outer boundaries. In the Newton iteration
procedure described below, we shall make use of both of these results.

2.2. Implementation of Newton iteration

The boundary integral formulation above provides an efficient method for determining
the velocity and stress on an interface of prescribed shape. We now develop an efficient
procedure for determining equilibrium profiles. Our basic approach is to adopt a
boundary perturbation scheme analogous to that used in asymptotic analyses. In
this procedure, we solve the boundary integral equations for a surface of known
shape subject to the boundary conditions (5), (6) requiring continuity of velocity and
stress at the interface. We then consider arbitrary perturbations of the boundary
shape to determine the profile which satisfies the additional constraint imposed by
the kinematic condition (7).

Let an interface of known shape be designated Γ0 and let the positions along
this curve be identified as x0(ξ) where ξ is any parametric variable describing the
curve. Let positions along a second interface Γ be defined by points x(ξ). Define the
displacement d(ξ) such that points on Γ are related to points on Γ0 by

x(ξ) = x0(ξ) + d(ξ) p(ξ) (12)

where p is a prescribed vector. (In effect, we will search for new surfaces Γ by
specifying the direction of displacement p, and solving for the magnitude of the
displacement d. )

Let the unit normal vectors on Γ0 and Γ be defined as n0 and n respectively and
define n′ = n− n0. The unit tangent vectors t0, t and hence unit normals on the two
surfaces may be obtained by differentiating (12). This leads to an expression for n′

n′ = −t0
[(
n0 ·

dp

dξ

)
d+ (n0 · p)

dd

dξ

]
Γ0

/(
ds

dξ

)
Γ0

+ O(d2) (13)

where ds is the differential arclength, e.g. ds/dξ = |dx/dξ|.
Let the interface Γ be considered as a perturbation of the interface Γ0. The velocity

on the interface Γ may then be written as a Taylor series about the unperturbed
surface Γ0 with a different expansion for each fluid. (This follows the classic pertur-
bation procedure for a two-phase system.) For the interior and exterior fluids, the
velocity on Γ becomes

(u1)Γ = (u1)Γ0
+

(
∂u1

∂n

)
Γ0

(p · n0) d+

(
∂u1

∂s

)
Γ0

(p · t0) d+ O(d2), (14)

(u2)Γ = (u2)Γ0
+

(
∂u2

∂n

)
Γ0

(p · n0) d+

(
∂u2

∂s

)
Γ0

(p · t0) d+ O(d2). (15)

All velocities u in (14), (15) represent the solution for a boundary value problem
(1)–(6) specified on surface Γ . Our goal in the perturbation analysis is to reformulate
this as a modified boundary value problem on the known surface Γ0. Toward this
end, let ū, σ̄ designate the solution of (1)–(6) for a droplet with unperturbed interface
Γ0 with both quantities evaluated on the interface. For small perturbations, we have

(u1)Γ0
= ū+ O(d), (16)

(u2)Γ0
= ū+ O(d). (17)
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We subtract (14) from (15) and note that the left-hand side is zero from the continuity
of u on Γ . We use (16) and (17) to evaluate the derivative and note that the tangent
derivatives cancel owing to the continuity of ū on Γ0. The result is

(u2 − u1)Γ0
+

(
∂ū2

∂n
− ∂ū1

∂n

)
Γ0

(p · n0) d = 0. (18)

In effect, we have transferred the velocity boundary condition (5) for the perturbed
solution to the unperturbed boundary Γ0.

Proceeding in a similar fashion, we may transfer the stress boundary condition (6)
to the unperturbed surface. Here we must expand σ in a Taylor series, and then take
the inner product with n on the perturbed surface Γ . After some algebra, the result is

(f2 − f1)Γ0
= −Fd− (σ̄2 − σ̄1) · n′ + γ(∇ · n)n+ (ρ2 − ρ1)(g · x)n (19)

where

F = (p · n0)

(
∂σ̄2

∂n
− ∂σ̄1

∂n

)
· n0 + (p · t0)

(
∂σ̄2

∂s
− ∂σ̄1

∂s

)
· n0. (20)

The curvature term γ(∇ · n)n in (19) may be expressed in terms of the unperturbed
value and functions and derivatives of d in an expression analogous to that given for
n′ in (13). The explicit result is given by Dimitrakopoulos (1996).

With (18) and (19), we now have boundary conditions for the velocity and stress for
the perturbed boundary value problem expressed as conditions on the unperturbed
interface Γ0. Thus we may choose an arbitrary d and solve for any surface Γ by
using the same boundary integral equation on Γ0 changing only the boundary data
in (18) and (19). Specifically, with these boundary conditions, the boundary integral
formula (11) generalizes to

Ω1 u1(x0) + Ω2 u2(x0) = −
∫
S2

[S · f2 − µT · u2 · n] dS

+

∫
S1

[S · f1 − λµT · u1 · n] dS

−
∫
Γ0

[S · (f2 − f1)− µT · (u2 − λu1) · n] dS (21)

where the coefficient Ω1 is 2πλµ for points x0 on Γ0 and S1 and zero for points on S2,
while Ω2 is 2πµ for points x0 on Γ0 and S2 and zero for points on S1.

The boundary integral equation (21) presents an efficient approach for studying
a large number of trial surfaces Γ . The discretized form of this equation yields a
linear system of algebraic equations Ax = b for the unknown surface velocities. The
system matrix for these equations is a function only of the unperturbed shape Γ0,
while the perturbation d defining Γ affects only the right-hand side. Thus the solution
for each successive Γ requires no additional numerical quadratures, and negligible
computational effort if the equations are solved by Gaussian elimination, and the
LU factorization is stored from a previous solution. While this is indeed an efficient
approach, we may go one step further. If we leave d unspecified and enforce the
kinematic condition (7) on the perturbed surface Γ , we obtain an additional equation
which may be used to solve for d. Using (14), we transfer the kinematic condition on
Γ to the unperturbed surface Γ0, and find

(u)Γ0
· n0 = −ū · n′ −

[
(p · n0)

(
∂ū

∂n

)
+ (p · t0)

(
∂ū

∂s

)]
· n0 d. (22)
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The kinematic condition (22) applies to both u1 and u2, however specifying either
guarantees the other owing to the continuity of velocity (5). The kinematic condition
may be used to eliminate one component of the unknown velocity vector at the
interface. The unknown displacement d takes its place, leaving the same number of
unknowns as in the previous integral equations.

The steps in the Newton iteration for the equilibrium profiles Γ are as follows:
Step 1: solve (11) with boundary conditions (5) and (6) to find the velocity ū on

the interface Γ0.
Step 2: with the velocity ū known, solve an equation of the form (10) for the

surface stresses f̄1, f̄2. (The boundary condition (6) gave only the jump ∆f, and not
the individual stresses.) This requires a single boundary integral equation solution,
because the stresses are related by f̄2 = f̄1 + ∆f with ∆f known.†

Step 3: evaluate the derivatives ∂ū/∂n, ∂ū/∂s, ∂σ̄/∂n · n0, ∂σ̄/∂s · n0 required for
boundary data in (18), (19) and (22).

Step 4: solve (21) with boundary conditions (18), (19) and (22) and with constant
drop volume, to determine the displacement d as described above.

This procedure requires three boundary integral solutions per iteration, however the
kernels S and T are identical in each case and numerical quadratures need be executed
only once. The derivatives ∂/∂s in Step 3 require differentiation of known quantities
along the surface. The derivatives ∂/∂n may be evaluated indirectly given the values
of σ and the equations ∇ · u = 0, ∇ · σ = 0. All numerical derivatives are evaluated
using the so-called collocation derivative, that is using analytical differentiation of the
high-order polynomials which comprise the basis functions for the spectral element
expansions. See Muldowney & Higdon (1995) or Canuto et al. (1988, § 2.3, 2.4) for
additional details.

A comment may be warranted concerning the constant-volume constraint in Step
4. While the solution of the boundary integral equation yields a velocity field which is
divergence free, the boundary perturbation represented by d admits a broad class of
surfaces which may include different volumes of fluid. We add the volume constraint
to assure that the equilibrium profile corresponds to the specified fluid volume V0.

In the Newton iteration procedure, we assume that the direction of the search
vector p is specified a priori. For freely suspended droplets, a reasonable choice is
simply the unit normal vector n. For droplets attached to a plane wall, we need to
modify this choice, because a displacement in the normal direction would move the
end points of the interface away from the wall. We need to define p such that the end
points are free to move along the wall, but remain in the plane y = 0. As an obvious
choice, we define p(ξ) parallel to the wall at the end points and smoothly interpolate
to n as x(ξ) moves away from the wall. This choice admits a class of profiles Γ with
arbitrary contact angles and arbitrary contact positions along the wall.

2.3. Numerical methods

The numerical solution of the boundary integral equation of § 2.2 is achieved through
the spectral boundary element method (Occhialini et al. 1992; Muldowney & Higdon
1995). Briefly, each boundary is divided into a small number of surface elements which
are parameterized by a variable ξ on the interval [−1, 1]. The geometry and physical

† As an alternative to Step 2, the surface stress may be evaluated directly as an integral of ∆f
and u over the boundary surfaces. The kernels required for this integration are the two dimensional
versions of T and Q as given in Muldowney & Higdon (1995). These kernels require additional
time for numerical quadratures, and the preferred choice will be dictated by a balance between
quadrature effort and matrix inversion time.
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variables are discretized using Lagrangian interpolation with the NB basis points
chosen as the zeros of the NB-order Legendre polynomial. This is equivalent to an
orthogonal polynomial expansion and yields the spectral convergence associated with
such expansions. The discretizations are substituted into the appropriate boundary
integrals and quadratures evaluated using adaptive Gaussian quadrature. Further
details are given in the aforementioned references.

The spectral element method as implemented here employs basis points in the
interior of the element. Owing to this choice, additional constraints are required at
the ends of the elements to enforce continuity of position and slope on the interface. As
an alternative, different basis sets may be used to enforce these constraints implicitly.
Gauss–Lobatto points maintain continuity of position, while basis points derived
from Jacobi polynomials are required for continuity of both position and slope. The
use of these alternative basis sets adds to the complexity of the programming effort,
and we did not pursue this strategy in the present work. The boundary conditions on
the contact angle and/or contact line position must be added as further constraints
for the linear system. The discretized system of equations is then solved using a
least-squares algorithm from the lapack software library.

3. Results
In this section, we present the results of a comprehensive series of computations

based on the methods described in § 2. Numerous tests were conducted to verify
the reliability and robustness of these algorithms. The performance of the basic
spectral element algorithm has been documented previously (Occhialini et al. 1992;
Muldowney & Higdon 1995). Additional tests were performed on the present im-
plementation as described by Dimitrakopoulos (1996). Various discretizations were
employed with NB = 4 to 18 demonstrating exponential convergence comparable to
that in previous applications of this algorithm. Several additional tests were per-
formed to verify the performance of the Newton iteration procedure. Two classes of
tests were conducted, for freely suspended droplets and for droplets attached to a
plane wall. For the freely suspended droplets, equilibrium profiles were compared with
results based on time-dependent computations and with the analytical solution of
Richardson (1968, 1973) for the special case λ = 0. For the attached droplets, detailed
comparisons were made with the results of Feng & Basaran (their figures 6 and 7) for
the case Re = 0. All computations were in excellent agreement with earlier results.
See Dimitrakopoulos (1996) for explicit comparisons. In addition to these checks, the
numerical results were found to be in excellent agreement with asymptotic theories
as described below. For the majority of results presented in this section, the droplet
interface was divided into NE = 6 elements with an NB = 10 spectral expansion on
each element. For certain cases with small angles (e.g. θA = 10◦), a higher-order basis
or more elements were employed. In all cases, numerical convergence was verified
by varying the order of the spectral expansion. The data for the critical Ca versus
∆θ were computed with a maximum relative error of 1% in nearly all cases. For
the highest deformations, the relative error in a few runs at small θA reached 3%.
These cases corresponded to large deformation where the receding contact angle was
of order 5◦. In the limit of small contact angles, lubrication theory (Johnson 1981)
predicts a singularity in the pressure near the contact lines making accurate numerical
computations more challenging.

The Newton iteration algorithm introduced in this paper is a robust procedure
which may prove useful in other boundary integral applications. To demonstrate the
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Iteration dmax umax dmax umax

1 2.8× 10−1 2.1× 10−1 2.4× 10−1 2.7× 10−1

2 6.8× 10−2 2.5× 10−2 1.5× 10−1 1.9× 10−1

3 3.0× 10−3 6.6× 10−4 6.2× 10−2 1.2× 10−1

4 −3.6× 10−4 1.3× 10−5 6.5× 10−2 4.8× 10−2

5 2.1× 10−6 1.7× 10−6 2.4× 10−2 7.7× 10−3

6 −1.5× 10−9 1.7× 10−6 4.9× 10−4 6.7× 10−4

7 1.6× 10−5 2.1× 10−5

8 −4.5× 10−7 1.5× 10−6

9 −2.2× 10−8 4.7× 10−7

10 −1.5× 10−9 4.3× 10−7

Table 1. Convergence of Newton iteration for free surface flows: maximum displacement d and
maximum normal velocity evaluated over droplet surface. Columns 2 and 3 are for a droplet freely
suspended in extensional flow; columns 4 and 5 are for a droplet attached to a wall. Interface
profiles are shown in figure 3.

potential of this method and its range of convergence, we consider two examples: a
freely suspended droplet in an extensional flow and a droplet attached to a wall in
a shear flow. In each case, the initial profile is that for a quiescent fluid. Figure 3
illustrates the convergence of the droplet profiles, while table 1 shows the convergence
of the normal velocity and the displacement d. These examples were chosen to show
that the method converges rapidly even for large differences between the initial guess
and the final shape. In the initial iterations, the method does not show the quadratic
convergence dn+1 ∼ d2

n characteristic of Newton’s method, because the initial guess is
far from the equilibrium solution and d is not sufficiently small. In later steps, when
the displacement is reduced below 10−3 (relative to drop radius), the convergence is
quite rapid, but still fails to achieve a quadratic rate. The analytical derivations leading
to the boundary integral equation (21) are accurate to O(d2), and thus should produce
a quadratic convergence rate. The failure to achieve the full quadratic convergence for
small d is associated with discretization error in the boundary integral solution and
with errors associated with numerical differentiation in Step 3 of the algorithm. In the
boundary integral formulation, the continuity of velocity, surface stress and surface
geometry is not enforced by the basis functions, and these conditions must be added
as explicit constraints. This yields an overdetermined system of equations which is
solved using a least-squares algorithm. The residuals in this solution scale as a small
number multiplied by d. When d is large, these residuals are smaller than d2 and
quadratic convergence is achieved. As convergence continues, d is reduced and the
small residuals from the linear system become the dominant error term. In this case,
the rate of convergence becomes linear in d. To eliminate this problem, one would
require basis functions with continuity of the function and first derivative at element
boundaries. The appropriate basis functions are derived from Jacobi polynomials,
but the use of this basis and the implicit coupling across element borders would
significantly complicate the programming effort for the algorithm.

Despite the failure to achieve quadratic convergence, the displacement and normal
velocity in all cases show exponential convergence e−cn with the number of iterations,
yielding performance far superior to previous techniques employed with the boundary
integral method. After the initial iterations where d is large, the data of table 1 show
a reduction in d of 4 to 5 orders of magnitude in just 3 iterations. As noted,
the examples shown here were chosen to illustrate the large range of convergence.
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Figure 3. Convergence test for the Newton iteration scheme. (a) Droplet in extensional flow, λ = 1,
Ca = 0.125: initial shape, 1st and final iterations; (b) droplet on solid wall, λ = 1, Ca = 0.05,
Bd = 0, θA = 90◦: initial shape, 2nd and final iterations.

Additional convergence tests with closer initial approximations show the same high
convergence rate starting from the first iteration. For parametric studies, it is most
effective to choose initial guesses based on nearby solutions such that a small number
of iterations yields an accurate solution. This is consistent with common practice in
finite element applications of Newton’s method.

3.1. Drop displacement in the absence of gravity, Bd = 0

We begin our investigation of drop displacement from a rigid wall by considering
shear flows in the absence of gravitational forces (Bd = 0). Figure 4 shows the
streamlines for four equilibrium profiles in the case of droplets with viscosity ratios
λ = 1 and λ = 10 for capillary numbers Ca = 0.02 and Ca = 0.08. The advancing
contact angle is θA = 90◦ in each case, while the difference θA − θR required for
equilibrium at each Ca may be determined from figure 6 below. Several noteworthy
features are apparent from these figures. First, in comparing the outer flows at equal
Ca, we see that there is very little change in the velocity field even for this large
change in viscosity ratio. Based on the spacing of the streamlines (at equal increments
of stream function), we observe only a modest reduction in velocity above the λ = 10
droplet. On the other hand, the velocity field inside the droplets has the same pattern,
but its magnitude is greatly reduced for the more-viscous droplets. (The stream
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(a)

Ca = 0.02 k = 1

(c)

Ca = 0.02 k = 10

(d)

Ca = 0.08 k = 10

(b)

Ca = 0.08 k = 1

Figure 4. Streamlines for shear flow past viscous droplets attached to a solid wall with Bd = 0. All
contours are plotted at equal increments of stream function in the exterior flows; contours in the
interiors are plotted at spacings 1/25 and 1/125 of the exterior values for the λ = 1 and λ = 10
droplets respectively.

function contours in the interior are plotted at intervals of 1/25 and 1/125 of the
external intervals for the λ = 1 and λ = 10 drops respectively.) The more-viscous
droplet shows the formation of corner eddies at the contact lines; however these
eddies are extremely weak and have little effect on the overall dynamics.

It should be emphasized that the streamlines shown in figure 4 (and in figure 9
below) were computed using a low-order contour algorithm on a rectangular mesh.
These streamlines are calculated in a post-processing operation, and the resolution
of the streamlines is not representative of the precision of the boundary integral
solutions. In particular, the poorly resolved corner eddies for λ = 10 in figure
4 (c, d ) (and in figure 9 c, d below) do not reflect the shape of the droplet interface.
The droplet interface as calculated in the spectral boundary element algorithm is
extremely smooth with continuous slope as shown in figure 5 and figure 10 below.

Comparing the low-Ca results with the higher-Ca cases in figure 4, we observe
that the trailing contact line has been displaced further downstream as the flow rate
has increased. This trend can be seen more clearly by superimposing the equilibrium
contours at different flow rates (or Ca) on the same plot. Figure 5 (a–c) shows the
equilibrium contours for three different viscosities (λ = 0, 1, 10) all with θA = 90◦.
With each successive contour, the contact angle hysteresis θA−θR is increased allowing
a larger flow rate before the critical Ca is reached. Each of the droplets in figure
5 (a–c) has an identical volume of fluid. Earlier in figure 1 we had placed the origin
of the coordinate system at the centre of droplet, however in figure 5 all contours are
drawn with the upstream contact line fixed, while the movement of the downstream
contact line illustrates the increase in the overall length of the droplet. For a smooth
wall in a homogeneous shear flow, all positions on the wall are equally favoured, and
adjustments to new equilibrium profiles might be reached by movement of either or
both of the contact lines. Thus horizontal translations are arbitrary, and we have
aligned the leading edges for purposes of clear illustration.

The most distinctive feature of the profiles in figure 5 (a–c) is that the shapes are
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Figure 5. Equilibrium profiles for droplets in shear flows with Bd = 0 for large contact angles
θA = 90◦ (a–c) and for small contact angles θA = 20◦ (d–f).

remarkably similar even as the droplet viscosity varies from λ = 0 to λ = 10. This
trend is also seen in the profiles at small contact angles shown in figure 5 (d–f ). One
might infer from these figures that the critical capillary number for drop displacement
is very little affected by droplet viscosity. This inference would be in serious error as
the next figure will show.

Figure 6 (a–c) show the critical Ca as a function of hysteresis θA − θR for several
values of θA and for the three viscosity ratios viewed in figure 5. For each point on a
given curve, we specify the value of θA and the capillary number, and then solve for
the equilibrium profile which determines the value θR and hence ∆θ. The specified
Ca then represents the yield condition for that value of θA and θA − θR . For any
Ca below the critical value (e.g. for any lower shear rate), there exists a family of
equilibrium solutions with contact angles in the range θR 6 θ1, θ2 6 θA. The existence
of a family of solutions at lower Ca is a consequence of the inequality constraint
on contact angles. The critical Ca represents the limit for which this family reduces
to a single solution with θ1 = θR and θ2 = θA. The terminal points at the end of
each curve represent the largest ∆θ for which accurate numerical calculations could
be executed. (The criteria for an accurate numerical solution include convergence of
the Newton iteration, consistency with increasing order of NB and an error tolerance
for the maximum u · n 6= 0 on the interface.) It appears that the true terminal point
based on physical grounds corresponds to a value ∆θ → θA, for which θR → 0 and the
interface becomes tangent to the boundary wall at the upstream contact point. This
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limit produces a singularity in the pressure (Johnson 1981) and an infinite sequence
of Moffatt eddies at the contact point, making numerical computations impractical.

The curves of figure 6 reveal interesting behaviour for the critical Ca at different
viscosity ratios. For the viscous droplets (λ = 1, λ = 10) and a given hysteresis θA−θR ,
increasing the contact angle θA increases the critical shear rate or Ca. For an inviscid
droplet (λ = 0), increasing θA decreases the critical shear rate. This phenomenon is
much more pronounced at the smaller contact angles θA. The explanation for this
curious phenomenon is quite simple when one considers the basic physics involved.
For viscous droplets with small contact angles, the primary hydrodynamic force is
the shear stress which is very close to τ∞ ≡ µG independent of the internal viscosity.
As θA increases, the height of the drop increases, while its length decreases. The
hydrodynamic force scales as `τ∞, hence a reduced length requires a higher shear
rate to overcome the surface force γθA∆θ which is independent of length. (See the
Appendix for an asymptotic analysis.) By contrast, the shear stress on the inviscid
droplet is identically zero, and the hydrodynamic force is due to the pressure field.
The pressure force on the inviscid droplet is insensitive to the length and scales with
the droplet height. Increasing the contact angle θA increases the height and pressure
force, hence a lower flow rate is sufficient to displace the droplet. Based on these
phenomena one should be cautious in extrapolating results for a given viscosity ratio
to droplets of different viscosities, e.g. in comparing liquid droplets and gas bubbles.

The viscosity behaviour seen in figure 6 may be surprising given that previous
authors (Dussan 1987) have found that the critical capillary number is independent of
viscosity ratio to leading order. This conclusion is correct, but needs to be interpreted
within the limits of the theory. In the Appendix, we present the simple two-dimensional
analogue of Dussan’s lubrication theory. The critical capillary number is given by
(A4):

Caasym =

(
2

27π

)1/2

θ
3/2
A ∆θ.

For comparison, Dussan’s theory for three-dimensional droplets predicts

Caasym ∼ θ4/3
A ∆θ.

Each of these results is indeed independent of λ. The problem lies in the fact that
λ → 0 is a singular limit. The shear stress on the drop scales as τ∞ for any finite
λ, but is identically zero for λ = 0. The pressure force is much smaller than the
shear stress for finite λ, however the pressure force becomes the dominant force for
infinitesimal λ where the lubrication theory is no longer valid. The critical capillary
number undergoes significant changes in scaling when λ is very small (see (A 12)
in the Appendix.) This reaffirms the fact that one should be extremely cautious in
applying lubrication arguments in cases where λ� 1, e.g. for gas bubbles in liquids.

Given the results of the asymptotic lubrication theory for viscous fluids, one would
expect the Ca dependence on viscosity ratio to lessen for small contact angles where
this theory is valid. To examine this proposition, we plot the curves for several
viscosity ratios on a single graph in figure 7. Here the numerical results are consistent
with the lubrication theory for small angles with the λ dependence disappearing as
θA takes on smaller values. On the other hand, at larger θA, the very viscous fluids
(λ = 10, λ = 100) show significant departure from the λ = 1 results. Clearly, the
effects of viscosity ratio should not be discounted for viscous fluids with λ > 1 and
projections based on λ = 1 may give only qualitative predictions for more-viscous
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Figure 6. Critical capillary number versus hysteresis θA − θR for Bd = 0 and viscosity ratios λ as
noted. Contact angles θA: N, 10◦; �, 20◦; �, 30◦; •, 40◦; 5, 50◦; 4, 60◦; 3, 70◦; 2, 80◦; ◦, 90◦.
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Figure 7. Critical capillary number as a function of contact angle hysteresis θA − θR for Bd = 0.
Contact angles θA: N, 10◦; �, 20◦; �, 30◦; 5, 50◦; ◦, 90◦; viscosity ratio λ: ——, 1; - - - -, 2;
– – – –, 10; — ·—, 100.

fluids. Note that the inviscid droplet results are not shown on figure 7; these curves
would appear far above and to the left of the plotted curves.

To assess the quantitative accuracy of the asymptotic theory for critical Ca, we plot
the ratio of the computed numerical value to the asymptotic prediction in figure 8.
Note that the horizontal axis has been scaled with θA yielding the variable ∆θ/θA.
The first conclusion is that the quantitative predictions are rather poor, even for
relatively small contact angles. In fact, the range of validity is even smaller than this
figure might indicate because of the scaling of the abscissa. Dussan’s theory as well
as our two-dimensional analogue requires not only θA � 1, but also ∆θ � θA. Thus
the theory is valid only for vanishingly small values of the contact angle hysteresis,
i.e. only within a very small region in the upper left corner of figure 8. Even in the
limit as ∆θ → 0, the predictions shown on figure 8 for finite θA are not that accurate,
as indicated by the intercepts of the curves with the ordinate axis. Despite its limited
range, the lubrication approximation does provide a useful check for our numerical
computations. Dimitrakopoulos (1996) has extrapolated the numerical results for
small θA and shown excellent agreement with the asymptotic prediction (A 4).

One might attempt to improve upon the asymptotic theory by relaxing the restric-
tion ∆θ � θA. As noted by Dussan, this is quite difficult in the three-dimensional case,
involving the solution of a nonlinear partial differential equation for the interface
shape. Moreover, the inherent limits of the lubrication approximation make such a
computation of questionable value. In the two-dimensional case, we have calculated
the next term in the asymptotic expansion for small ∆θ/θA = ε� 1. (The details are
omitted but follow the approach of Johnson 1981.) This requires the solution for the
first-order perturbation of the droplet profile and yields a correction factor

(
1− 3

4
ε
)

which is plotted as the dashed line in figure 8. We see that this correction yields little
improvement in overall accuracy, because it ignores a correction factor (1+O(θA,∆θ))
associated with perturbations in the outer flow. The perturbation calculation does
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Figure 8. Ratio of critical Ca to asymptotic predictions based on (A 4) with Bd = 0. Dashed line is
asympotic theory with second-order correction for ∆θ. Contact angles θA: N, 10◦; �, 20◦; �, 30◦;
•, 40◦; 5, 50◦; 4, 60◦; 3, 70◦; 2, 80◦; ◦ 90◦.

yield one interesting result, as it predicts a first-order disturbance profile independent
of λ. This helps explain the similarity of equilibrium profiles shown in figure 5.

Despite the lack of a higher-order analytical theory for the critical Ca, it may
prove useful in some applications to present an empirical equation which correlates
the data of figure 6. For the viscous droplets, we may start with equation (A 2),
which represents the balance of viscous and interfacial forces. The interfacial force
γ(cos θR − cos θA) is an exact result valid for all contact angles. For the viscous
force, we may replace the asymptotic result 3 `τ∞ with an expansion of the form
3 `τ∞(1 + b1θA + b2∆θ/θA) where the coefficients b1 and b2 are to be determined
empirically. This approach yields a critical capillary number

Ca =

(
2

27π

)1/2
(cos θR − cos θA) θ

1/2
A

1 + b1θA + b2(∆θ/θA)
. (23)

The expression (23) reduces to the exact asymptotic result (A 4) in the limit as θA
and ∆θ/θA approach zero. Utilizing (23) and employing a least-squares fit to the data
in figure 6 (b, c) the coefficients b1 and b2 take values

λ = 1 : b1 = 0.509 , b2 = 0.161,

λ = 10 : b1 = 0.823 , b2 = 0.065.

}
(24)

With these values (23) predicts the critical Ca with a maximum relative error of 1.5%
for λ = 1 and 5% for λ = 10.

Turning to the zero-viscosity results of figure 6 (a), we note that there is no simple
asymptotic theory for inviscid droplets with λ = 0; however, a scaling analysis (A 11)

predicts Ca ∼ θ
−1/2
A ∆θ. Following the procedure described above, we may utilize

this result, employing the exact expression for the interfacial force and a linearized
correction for the hydrodynamic force. We define θ̄ = (θA + θR)/2 and employ this
quantity in the scaling in place of θA. This leads to improved results with a correlation
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for the critical Ca in the form

Ca =
(cos θR − cos θA) θ̄−3/2

b0 + b1θA + b2(∆θ/θA)
. (25)

A least-squares fit to the data of figure 6 (a) determines the coefficients:

λ = 0 : b0 = 4.515 , b1 = −1.032 , b2 = 0.299. (26)

With these values, (25) predicts the critical Ca for λ = 0 with a maximum relative
error of 4%.

3.2. Drop displacement with gravitational effects

Having considered the major phenomena affecting droplet displacement at zero Bond
number, we now turn our attention to the effects of gravity. We consider only the
case of a vertical gravity vector with increasing Bond number tending to increase
the spread of the droplet over the surface. We begin with the streamline patterns in
figure 9, which may be compared with the analogous results for Bd = 0 from figure 4.
As before, we see little change in the external flow for λ = 1 and λ = 10, however the
interior circulation is much weaker for the more-viscous droplets. We emphasize that
the small unresolved corner eddies for λ = 10 are a consequence of the low-order
streamline algorithm. The actual droplet interfaces are computed to high precision
and show smooth contours as shown in figure 10 below. All profiles for Bd = 1 have
greater length than their counterparts for Bd = 0 with significant consequences for
the critical displacement conditions. For viscous droplets with equal Ca, these profiles
show that Bd = 1 droplets require a greater contact angle hysteresis to maintain their
position on the substrate than the zero gravity case. Finally, the figures for Bd = 5
illustrate the asymptotic limit for a very long droplet with nearly parallel streamlines
over the bulk of the droplet volume. At this Bond number droplets can withstand
only a very small deformation before being displaced from the surface.

Continuing our discussion of gravity effects, we show the equilibrium profiles for
Bd = 1 and a range of Ca and viscosity ratios in figure 10. These profiles are
qualitatively similar to their counterparts in the Bd = 0 case. As the capillary number
is increased, the droplets show a larger change in θA − θR and a greater extension
over the solid boundary. The inviscid droplets show considerably less extension than
the viscous droplets under the same conditions. Figure 11 shows the critical capillary
number as a function of θA − θR for several viscosity ratios and contact angles θA.
Note that the critical Ca for the viscous droplets is in all cases lower for these figures
than for the respective cases at Bd = 0. The physical explanation is similar to that
discussed earlier. The gravitational force tends to spread the droplet over the plane,
increasing the length for a given volume of fluid. The increased length increases
the viscous force which scales as `τ∞. With increasing length, the droplet yields
its position at smaller shear rates and hence gives a lower critical Ca. As before,
decreasing the contact angle adds to this effect with a further increase in length and
decrease in Ca. The droplets for Bd = 5 show the smallest yield conditions owing to
their extreme length. These trends are all in qualitative agreement with the asymptotic
predictions of lubrication theory as given in the Appendix (A 18), (A 19). We have
extrapolated the numerical results for small θA, ∆θ and found excellent agreement
with the asymptotic predictions.

As with the zero gravity case, the inviscid droplets exhibit a behaviour opposite to
that of the viscous droplets. The influence of the pressure force scales with droplet
height yielding a lower Ca as the height is increased. This explains the increasing
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Figure 9. Streamlines for droplets in shear flow with gravity effects: (a–d) Bd = 1, (e,f ) Bd = 5.
Contours are plotted at equal increments of stream function in the exterior flows; contours in the
interiors are plotted at spacings 1/50 and 1/500 of the exterior values for the λ = 1 and λ = 10
droplets respectively.

Ca as the contact angle θA decreases. An interesting summary of these phenomena
is presented in figure 12 where we gather results for viscosities λ = 0 and λ = 1 and
Bond numbers Bd = 0 and Bd = 1. For the viscous drop, increasing the Bond number
reduces the critical Ca, while the inviscid drop shows exactly the opposite behaviour.
Again, the explanation lies in the different behaviour of the viscous and pressure
forces in the respective cases. While this phenomenon is significant for the large
contact angle θA = 90◦, it is much more dramatic for a small contact angle such as
θA = 20◦. In the asymptotic limits, the behaviour of the inviscid and viscous droplets
diverges completely. For arbitrary contact angle, as the Bond number approaches
infinity, the critical Ca for an inviscid droplet is infinity, while for a viscous droplet it
is zero. For arbitrary Bond number, in the limit of small contact angles, the critical Ca
for inviscid droplets approaches infinity, while that for viscous droplets approaches
zero.

We end this section by presenting empirical equations which correlate the data for
the critical Ca at non-zero Bond number. For the inviscid droplets, the critical Ca is
correlated using equation (25), and coefficients for the data in figure 11 (a) at Bd = 1
yield

Bd = 1 , λ = 0 : b0 = 3.336 , b1 = −0.985 , b2 = 0.173 (27)

with a maximum relative error of 3%.
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Figure 10. Equilibrium profiles for droplets in shear flows with Bond number Bd = 1 for contact
angles θA = 90◦ (a–c) and θA = 20◦ (d–f).

The critical capillary number for the viscous droplets is correlated by an equation
of the form

Ca =

(
2

27π

)1/2
(cos θR − cos θA) θ

1/2
A

b0 + b1θA + b2(∆θ/θA)
. (28)

The coefficient b0 is a function of the Bond number only and is determined as an
implicit function by the asymptotic results (A 16), (A 17). The coefficients b1 and b2

are determined by least-squares fits to the data. The results are:

Bd = 1 , λ = 1 : b0 = 1.170 , b1 = 0.457 , b2 = 0.332,

Bd = 1 , λ = 10 : b0 = 1.170 , b1 = 0.676 , b2 = 0.256,

Bd = 5 , λ = 1 : b0 = 1.824 , b1 = 0.401 , b2 = 0.556.

 (29)

The maximum relative error with this equation is 2% for λ = 1, Bd = 1; 3% for
λ = 10, Bd = 1 and 1.5% for λ = 1, Bd = 5.

4. Conclusions
In this paper we have conducted a comprehensive study of the drop displacement

problem for two-dimensional droplets in viscous shear flows. We have considered a
wide selection of parameters to investigate the physical behaviour of different droplets
and to test the limits of theoretical predictions. This study complements the analytical
theory of Dussan (1987) for displacement of droplets in low-Reynolds-number flows
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Figure 11. Critical Ca for droplets with gravity effects: (a–c) Bd = 1, (d ) Bd = 5. Contact angles
θA: N, 10◦; �, 20◦; �, 30◦; •, 40◦; 5, 50◦; 4, 60◦; 3, 70◦; 2, 80◦; ◦ 90◦.

and provides a counterpoint to the numerical study of Feng & Basaran which focused
on the high Re inertial regime. A number of important conclusions have been reached.

(i) Asymptotic results based on lubrication theory should give correct qualitative
predictions for the behaviour of viscous drops, however the range of validity is quite
small and the quantitative predictions show significant errors. The critical capillary
number shows significant departure from the linear dependence on hysteresis θA− θR
predicted by asymptotic theories.

(ii) Viscosity ratio plays an important role for viscous droplets, showing a signifi-
cant effect at high contact angles. This sensitivity to viscosity ratio is not predicted
by lubrication theory.

(iii) Inviscid droplets show dramatic and often contradictory behaviour compared
to viscous droplets. These effects are most severe at high Bond number and small
contact angles. Gas bubbles and liquid droplets may be expected to show dramatically
different behaviour owing to these differences.
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Figure 12. Critical Ca for droplets with different viscosity ratio and Bond numbers. (a) θA = 90◦,
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(iv) Gravitational effects may play an important role in the drop displacement
process. The spreading effect associated with high Bond numbers reduces the ability
of viscous drops to withstand fluid motion, but dramatically increases the resistance
of inviscid droplets.

We close by noting that these results are based on fundamental physical principles
associated with the scaling of viscous, pressure and surface forces. As a result,
we anticipate that the conclusions will remain valid in the analogous problem for
the displacement of three-dimensional droplets in viscous shear flow. The Newton
iteration procedure introduced in this paper proved to be a robust and efficient
numerical technique. In combination with the three-dimensional spectral element
algorithm of Muldowney & Higdon (1995), we believe it will prove well suited to
equilibrium problems of this type.

This work was supported by the National Science Foundation. Computations were
performed on IBM RS6000 workstations furnished with support from the IBM SUR
program at the University of Illinois.
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Appendix
For droplets with small contact angles, θR , θA � 1, lubrication theory may be

employed to reach a simple analytical result for the yield condition for drop displace-
ment. This procedure is well known, and we cite directly those results which are
required for the simple two-dimensional flows considered here. Dussan (1987) and
Johnson (1981) include formal expositions for the associated three-dimensional and
axisymmetric problems.

Let the droplet occupy the region (−`, `) on the x-axis as described above, and
let the drop surface be specified as h(x). Let the velocity inside the droplet have
components (u, v), then the x-component of velocity is given by

u =
3G

4λh
(y2 − 2hy) +

G

λ
y. (A 1)

To leading order, the shear stress on the drop surface is simply τ∞ = µG. The
given velocity satisfies this condition as well as the no-slip condition on the wall. The
pressure gradient inside is determined by the condition of zero volume flow for a
stationary droplet. Based on (A 1), the shear stress on the solid wall is τ = − 1

2
τ∞.

A momentum balance over the volume of the drop (including the interface) yields
for the x-component

2 `
(

3
2
τ∞
)

+ γ cos θA − γ cos θR = 0. (A 2)

Note that the normal stress is of lower order and does not contribute to the leading
order momentum balance in the x-direction. The momentum balance shows the
importance of contact angle hysteresis in the drop displacement problem. If θR = θA,
there is no net interfacial force to resist the fluid drag force. Given the x-momentum
balance, the yield condition for the shear stress required to displace the droplet may
be expressed in dimensionless form via the capillary number

Ca = 1
3

(cos θR − cos θA)
a

`
(A 3)

where we recall that a is the equivalent radius based on the drop volume. To leading
order for ∆θ � θA, the effective radius is a/` = (2θ/3π)1/2. Expanding the cos terms
for small θ, (A 3) becomes

Ca =

(
2

27π

)1/2

θ
3/2
A ∆θ (A 4)

where ∆θ = θA − θR .
This result (A 4) may be compared with the theory of Dussan (1987) which predicts

Ca ∼ θ4/3
A ∆θ for three-dimensional drops.

It is interesting to note that the yield condition (A 4) is independent of the viscosity
of the droplet to leading order. This result is valid for all viscosities except in the
limit as λ → 0. To illustrate the breakdown of the theory for small λ, we note
that lubrication theory assumes a leading-order outer flow u∞ = Gy. Evaluating the
velocity at the upper surface of the droplet, we find

(u)y=h =
1

4

Gh

λ
∼ G` θ

λ
. (A 5)

Comparing this to a characteristic velocity G` in the outer flow, we require that
u → 0 as θ → 0 to assure that u agrees with u∞. This condition is satisfied for all
fixed λ 6= 0. On the other hand, consider some θ � 1 for which θ ∼ λ. In this
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case, the velocity does not approach zero as θ → 0, and the outer flow does not
reduce to a simple shear flow. The explicit form of the velocity u0(x) evaluated at
θ → 0 can only be determined by solving the exterior boundary value problem with a
boundary condition u ∼ τ at the surface of the droplet. The proportionality coefficient
is determined by the interior flow. In the absence of the detailed solution, the most
we can say is that u scales as G` based on dimensional analysis. The velocity profile
is now of the form

u =
u0

h2
(3y2 − 2hy) (A 6)

and the shear stresses on the droplet surface and on the wall are

τh =
4λµu0

h
and τw =

−2λµu0

h
. (A 7)

With these results and the scaling u0 ∼ G`, the total viscous force on the drop scales
as

`

(
λµG`

h

)
∼ `

(
λµG

θ

)
∼ `

(
λ

θ
τ∞

)
. (A 8)

Substituting this term for the viscous force in the momentum balance (A 2) yields

Ca ∼ 1

λ
θ

5/2
A ∆θ (A 9)

which implies that the critical Ca will increase rapidly as λ decreases for drops whose
viscosity is much smaller than the contact angle.

Proceeding a bit further, we consider an inviscid droplet with λ ≡ 0. For this case,
the shear stress is exactly zero, and the only hydrodynamic force is the normal stress.
The pressure inside the droplet is a constant, while the normal stress on the outer
surface is dictated by the surface tension and the curvature. Owing to this fact, the
momentum balance in the x-direction reduces to a simple identity. The prediction
of the critical Ca would require the full solution for the outer pressure field. While
we cannot achieve this goal analytically, a simple scaling analysis provides useful
information. For small contact angles θA and ∆θ/θA � 1, normal stresses responsible
for a net force in the x-direction scale as (θτ∞) and the total force scales as

Fx =

∫ `

−`
p nx dx ∼ (θτ∞) θ ` ∼ ` θ2 τ∞. (A 10)

With this estimate for the normal stress, the critical capillary number scales as

Ca ∼ θ−1/2
A ∆θ. (A 11)

The point of transition between the predictions (A 9) and (A 11) may be determined
by comparing the relative magnitude of the shear stress estimate (A 8) with the normal
stress (A 10). In summary, we have three different scalings for the critical capillary
number, based on the value of the viscosity ratio λ:

θ � λ : Ca ∼ θ3/2
A ∆θ,

θ3 6 λ 6 θ : Ca ∼ 1

λ
θ

5/2
A ∆θ,

λ < θ3 : Ca ∼ θ−1/2
A ∆θ.

 (A 12)

The small-angle lubrication theory for viscous fluids is easily extended to include
gravitational effects. The x-momentum balance (A 3) carries forward as before. To
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relate the effective radius a to `, we need to solve for the drop profile. Employing the
interfacial stress boundary condition with curvature h′′ yields

− γh′′ = p0 + (ρ2 − ρ1) gh. (A 13)

Integrating twice and employing the conditions h(±`) = 0, h′(`) ≈ −θA we eliminate
p0 and find the drop profile

h =
θA

β tanh β `

[
1− cosh βx

cosh β `

]
. (A 14)

where β2 = (ρ1 − ρ2)g/γ.
Integrating to find the volume of the drop yields the desired expression for a/`

a

`
=

[
2θA
π

β `− tanh β `

(β `)2 tanh β `

]1/2

. (A 15)

Combining this result with the momentum balance yields the critical Ca for drop
displacement

Ca =

(
2

9π

)1/2

θ
3/2
A ∆θ

[
β `− tanh β `

(β `)2 tanh β `

]1/2

. (A 16)

The parameter β` is related to the Bond number through a/`, hence

Bd =
2

π

β `− tanh β `

tanh β `
. (A 17)

Equations (A 16) and (A 17) give the critical capillary number as an implicit function
of Bd. The functional relationship may be made clearer by considering expansions at
the asymptotic limits. For Bd � 1, we have

Ca =

(
2

27π

)1/2

θ
3/2
A ∆θ

[
1− π

20
Bd +

π2

1120
B2
d

]
, (A 18)

and for Bd � 1

Ca =

(
2

3π

)
θ

3/2
A ∆θ B

−1/2
d . (A 19)

If (A 18) is employed for Bd 6 3 and (A 19) for higher values the predicted Ca is
within 10% of the value given by (A 16), (A 17).
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